## ASSIGNMENT SET - I

## Department of Mathematics

 Mugberia Gangadhar Mahavidyalaya

## B.Sc Hon. (CBCS)

## Mathematics: Semester-II

Paper Code: C3T
[REAL ANALYSIS]

## Answer all the questions

1. Construct a bounded set of real numbers with exactly three limit points.
2. Is the sequence $\left\{(-1)^{n} / n\right\}$ a Cauchy sequence ? Justify your answer.
3. Give an example of an infinite series $\sum_{n=1}^{\infty} a_{n}$ such that $\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)+\ldots$ converges but $a_{1}+a_{2}+a_{3}+a_{4}+\ldots$ diverges.
4. Determine whether the sequence $\left\{-2 n+\sqrt{ }\left(4 n^{2}+n\right)\right\}$ is a Cauchy sequence or not.
5. If $\sum_{n=1}^{\infty} a_{n}$ converges then prove that $\lim _{n=\infty} a_{n}=0$. Is the converse true ? Justify
6. Find supA and $\operatorname{Inf} A$, where $A=\left\{x \in R: 3 x^{2}+8 x-3<0\right\}$
7. Show that the set of all even integers is not compact .
8. If $\mathrm{p}>0$ and it is a real number, then find the limit of the sequence $\left\{\frac{n^{t}}{\left((1+p)^{n}\right)}\right\}$
9. If y is a positive real number then show that there exist a natural number m such that $0<\frac{1}{2^{m}}<y$.
10. Find the derived set of the set $\mathbf{S}=\left\{(-1)^{n}\left(1+\frac{1}{n}\right): n \in N\right\}$.
11. Show that the sequence $\left\{\left(1-\frac{1}{n}\right) \cos \left(\frac{n \pi}{2}\right)\right\}$ is not convergent, but has a convergent subsequence.
12. State Archimedean property of real number and hence show that $\lim _{n \rightarrow \infty} \frac{x}{y}=0$
13. Verify that the series $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ is not convergent.
14. Construct an unbounded sequence with exactly one subsequential limit .
15. If $\left\{s_{n}\right\}$ is a sequence of real number and if $s_{n} \leq M$ for all $n \in N$, and if $\lim _{n \rightarrow \infty} s_{n}=L$, then prove that $\mathrm{L} \leq \mathrm{M}$.
16. For any two real numbers $a, b$ with $a<b$, prove that there exist a rational number $r$ such that $\mathrm{a}<\mathrm{r}<\mathrm{b}$.
17. Find the limit superior and limit interior of the sequence $\left\{1+(-1)^{n}+\frac{1}{2^{n}}\right\}$
18. Prove that every bounded decreasing sequence is convergent.
19. 

i) If $\sum_{n=1}^{\infty} a_{n}$ diverges then prove that $\sum_{n=1}^{\infty} n a_{n}$ also diverges.
(ii) Let $A$ and $B$ be two subsets of $R$. If int $A=$ int $B=\emptyset$ and if $A$ is closed in $R$, then find int (AUB).
20. For any sequence $\left\{a_{n}\right\}$ of positive real numbers, prove that $\lim _{n \rightarrow \infty} \inf \frac{a_{n+1}}{a_{n}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$.
21.
i) If $p$ is a limit point of a subset $S$ of real number $s$, then prove that there exists a countably infinite subset of $S$ having $p$ as its only limit point.
(ii)Let $S$ be a non- empty subset of real number $s$ which is bounded below and $T=\{-X: x \in S\}$ . Prove that the set $T$ is bounded above and $\operatorname{Sup} T=-\inf S$
22. (i) Let $A$ be subset of $R$. One of the following statements is true and the other is false. Identify the true statement and prove it . Identify the false statement with proper arguments
A. very interior point of $A$ is a limit point of $A$.
B. very limit point of $A$ is an interior Point of $A$
23. Examine the convergence of the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ where $\mathrm{x}_{\mathrm{n}}=\sum_{k=1}^{n} \frac{3 k^{2}+2 k}{2^{k}}$
24. i) If $\theta$ is a rational number, then examine whether the sequence $\{\sin (n \theta \pi)\}$ has a limit . (ii) If $\sum_{n=1}^{\infty} a_{n}$ is a convergent then test the convergence of the series $\sum_{n=1}^{\infty} \frac{a_{n}}{\log (n+1)}$.
25. (i) Let $S$ and $T$ be two nonempty bounded subset of $R$ such that $S$ is a subset of $T$. Prove that $\inf T \leq \inf S$.
(ii) Test for the convergence of the series $\frac{3}{5} x^{2}+\frac{4}{5} x^{3}+\frac{15}{17} x^{4}+\frac{12}{13} x^{5}+\ldots, x>0$
26.
27. (i) Let $S$ be a sequence of real numbers. Show that every subsequence of a subsequence of $S$ is itself a subsequence of $S$.
(ii) Let a sequence of positive real numbers $\left\{x_{n}\right\}$ converge to $x$. Prove that the sequence $\left\{\sqrt{x}_{x_{n}}\right\}$ converges to $\sqrt{ } x$.

