## ASSIGNMENT SET - I

#### **Department of Mathematics**

### Mugberia Gangadhar Mahavidyalaya



**B.Sc Hon.(CBCS)** 

### **Mathematics: Semester-II**

# Paper Code: C3T

### [REAL ANALYSIS]

#### Answer all the questions

- 1. Construct a bounded set of real numbers with exactly three limit points.
- 2. Is the sequence  $\{(-1)^n/n\}$  a Cauchy sequence ? Justify your answer.
- 3. Give an example of an infinite series  $\sum_{n=1}^{\infty} a_n$  such that  $(a_1 + a_2) + (a_3 + a_4) + ...$  converges but  $a_1 + a_2 + a_3 + a_4 + ...$  diverges.
- 4. Determine whether the sequence  $\{-2n + \sqrt{(4n^2 + n)}\}$  is a Cauchy sequence or not.
- 5. If  $\sum_{n=1}^{\infty} a_n$  converges then prove that  $\lim_{n=\infty} a_n = 0$ . Is the converse true ? Justify
- 6. Find supA and Inf A, where  $A = \{x \in \mathbb{R}: 3x^2 + 8x 3 < 0\}$
- 7. Show that the set of all even integers is not compact .
- 8. If p>0 and it is a real number, then find the limit of the sequence  $\left\{\frac{n^{t}}{((1+p)^{n})}\right\}$
- 9. If y is a positive real number then show that there exist a natural number m such that  $0 < \frac{1}{2m} < y$ .
- 10. Find the derived set of the set  $\mathbf{S} = \{(-1)^n (1 + \frac{1}{n}): n \in \mathbb{N}\}$ .
- 11. Show that the sequence {( $1\frac{1}{n}$ )cos ( $\frac{n\pi}{2}$ ) } is not convergent , but has a convergent subsequence.

12. State Archimedean property of real number and hence show that  $\lim_{n \to \infty} \frac{x}{y} = 0$ 

13. Verify that the series  $\sum_{n=1}^{\infty} sin \frac{1}{n}$  is not convergent.

- 14. Construct an unbounded sequence with exactly one subsequential limit .
- 15. If  $\{s_n\}$  is a sequence of real number and if  $s_n \leq M$  for all  $n \in N$ , and if  $\lim_{n \to \infty} s_n = L$ , then prove that  $L \leq M$ .
- 16. For any two real numbers a,b with a < b, prove that there exist a rational number r such that a < r < b.
- 17. Find the limit superior and limit interior of the sequence  $\{1 + (-1)^n + \frac{1}{2^n}\}$

18. Prove that every bounded decreasing sequence is convergent.

19.

i) If  $\sum_{n=1}^{\infty} a_n$  diverges then prove that  $\sum_{n=1}^{\infty} na_n$  also diverges.

(ii) Let A and B be two subsets of R. If int A = int B =  $\emptyset$  and if A is closed in R, then find int (AUB).

20. For any sequence  $\{a_n\}$  of positive real numbers, prove that  $\lim_{n \to \infty} \inf \frac{a_{n+1}}{a_n} \le \lim_{n \to \infty} \sqrt[n]{a_n}$ .

21.

i) If p is a limit point of a subset S of real number s, then prove that there exists a countably infinite subset of S having p as its only limit point .

(ii)Let S be a non- empty subset of real number s which is bounded below and T = { -X:  $x \in S$  }. Prove that the set T is bounded above and Sup T = - inf S

22. (i) Let A be subset of R. One of the following statements is true and the other is false.Identify the true statement and prove it . Identify the false statement with proper argumentsA. very interior point of A is a limit point of A.

B. very limit point of A is an interior Point of A

- 23. Examine the convergence of the sequence  $\{x_n\}$  where  $x_n = \sum_{k=1}^{n} \frac{3k^2 + 2k}{2^k}$
- 24. i) If  $\theta$  is a rational number, then examine whether the sequence { sin( $n\theta\pi$ ) } has a limit. (ii) If  $\sum_{n=1}^{\infty} a_n$  is a convergent then test the convergence of the series  $\sum_{n=1}^{\infty} \frac{a_n}{\log(n+1)}$ .
- 25. (i) Let S and T be two nonempty bounded subset of R such that S is a subset of T. Prove that inf  $T \le \inf S$ .

(ii) Test for the convergence of the series  $\frac{3}{5}x^2 + \frac{4}{5}x^3 + \frac{15}{17}x^4 + \frac{12}{13}x^5 + ..., x > 0$ 

26.

27. (i) Let S be a sequence of real numbers. Show that every subsequence of a subsequence of S is itself a subsequence of S.

(ii) Let a sequence of positive real numbers {  $x_n$  } converge to x. Prove that the sequence { $\sqrt{x_n}$  } converges to  $\sqrt{x}$  .

